3.229 \(\int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=130 \[ \frac{4 a (4 A+5 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a (4 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}} \]

[Out]

(2*a*A*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(4*A + 5*B)*Sin[c + d*x])/(15*d*
Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (4*a*(4*A + 5*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a
+ a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.222103, antiderivative size = 130, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {4015, 3805, 3804} \[ \frac{4 a (4 A+5 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a (4 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}}+\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(2*a*A*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(4*A + 5*B)*Sin[c + d*x])/(15*d*
Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (4*a*(4*A + 5*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a
+ a*Sec[c + d*x]])

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{1}{5} (4 A+5 B) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{2 a (4 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{1}{15} (2 (4 A+5 B)) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a A \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{2 a (4 A+5 B) \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{4 a (4 A+5 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.285668, size = 71, normalized size = 0.55 \[ \frac{a \sin (c+d x) \sqrt{\sec (c+d x)} (2 (4 A+5 B) \cos (c+d x)+3 A \cos (2 (c+d x))+19 A+20 B)}{15 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(a*(19*A + 20*B + 2*(4*A + 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sq
rt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.314, size = 96, normalized size = 0.7 \begin{align*} -{\frac{ \left ( -2+2\,\cos \left ( dx+c \right ) \right ) \left ( 3\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+4\,A\cos \left ( dx+c \right ) +5\,B\cos \left ( dx+c \right ) +8\,A+10\,B \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{15\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x)

[Out]

-2/15/d*(-1+cos(d*x+c))*(3*A*cos(d*x+c)^2+4*A*cos(d*x+c)+5*B*cos(d*x+c)+8*A+10*B)*(a*(cos(d*x+c)+1)/cos(d*x+c)
)^(1/2)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.12817, size = 428, normalized size = 3.29 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/60*(sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/
2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x +
5/2*c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A*sqrt(a) + 10*sqrt(2)*(3*cos(2/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*d*x + 3/2*c)*sin(2/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c))))*B*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]  time = 0.460691, size = 243, normalized size = 1.87 \begin{align*} \frac{2 \,{\left (3 \, A \cos \left (d x + c\right )^{3} +{\left (4 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (4 \, A + 5 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \,{\left (d \cos \left (d x + c\right ) + d\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/15*(3*A*cos(d*x + c)^3 + (4*A + 5*B)*cos(d*x + c)^2 + 2*(4*A + 5*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/
cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/sec(d*x + c)^(5/2), x)